SYNTHESIS OF CYCLOPENTADIENONE EPOXIDES FROM 10-OXATRICYCLODECADIENONES¹.

Adrie A. M. Houwen-Claassen, A. J. H. Klunder, and B. Zwanenburg^{*} Department of Organic Chemistry, University of Nijmegen, Toernooiveld, 6525 ED NIJMEGEN, The Netherlands

(Received in UK 26 July 1989)

<u>Abstract</u>: Various 10-oxatricyclodecadienone epoxides have been prepared in high yields by a stereospecific nucleophilic epoxidation of the corresponding 10-oxatricyclo[$5.2.1.0^{2.6}$]deca-4.8-dien-3-ones. These polycyclic epoxides could efficiently be converted into cyclopentadienone epoxides using Flash Vacuum Thermolysis. The synthetic potential of the last named epoxides in the field of natural product synthesis is illustrated by the preparation of an epi-pentenomycin.

Introduction

The unique combination of an epoxide ring, a vinyl system and a carbonyl group within a compact, small ring system makes the cyclopentadienone epoxides 1 a fascinating class of compounds. Mutual interaction of these functional groups will be inevitable and special chemical behaviour may thus be expected. As these functionalities and their combinations all are susceptible for both nucleophilic and electrophilic attack, a well defined choice of reagents and reaction conditions will presumably be necessary to attain chemo- and regioselectivity.

In the literature so far only a few members of this class of compounds have been described. Especially their photochemistry has been studied in detail. Tri- and tetraphenyl substituted cyclopentadienone epoxides have been observed to equilibrate with pyrylium oxides on irradiation^{3,4}. Photochemically induced rearrangements to 2-pyrones have been reported for the parent compound 1 (R=H)⁵ and for the alkyl- and phenylsubstituted compounds 1 (R=2,5-dimethyl; R=3,4-diphenyl; R=2,3,4,5-tetraphenyl)⁶⁻⁹. The frequently postulated intermediacy of cyclopentadienone epoxides in the photo-isomerisation of 4-pyrones to 2-pyrones has unambiguously been established for 1 (R=2,5-dimethyl)⁶. Moreover, phenyl-, alkyl- and otherwise substituted cyclopentadienone epoxides have been found to rearrange to 2-pyrones on heating^{3,5,10-12}. The parent compound 1 (R=H) has been reported to decompose in acidic or basic media⁵. Only a few reports mention a synthetic application of these epoxides^{2,13,14}.

It is clear that a systematic study of cyclopentadienone epoxides was hampered by the difficult accessibility of these substrates. A general entrée to these compounds not only would allow a systematic study of their chemical behaviour but would also have a considerable synthetic impact, as these epoxides are potentially valuable synthons for the preparation of highly oxygenated cyclopentenoid natural products. Their apparent chemical sensitivity presumably will prevent a general preparation using normal chemical procedures. But, thanks to the development of advanced thermolysis techniques¹⁵ neutral synthetic methods are now available, which can be applied in preparing epoxides of type 1.

In the preceding paper¹⁶ we presented our strategy towards cyclopentenones via Flash Vacuum Thermolysis (FVT) of appropriately functionalized tricyclic precursors. We selected 10-oxatricyclodecadienones 2 as potential synthons for the FVT mediated synthesis of substituted cyclopentadienone epoxides and described *in extenso* the preparation of such tricyclic enones from the Diels Alder adduct of furan and cyclopentene-1,4-dione.

In the present report we focus on the utilisation of these oxatricyclodecadienones for the synthesis of 4and/or 5-substituted cyclopentadienone epoxides 4, according to the pathway indicated in Scheme 1.

Scheme 1

To illustrate the synthetic potential of such epoxides in the field of natural product synthesis, we here also describe the selective cleavage of the epoxide ring of 4 (R_1 =H; R_2 =CH₂OMe) leading to the *epi*-pentenomycin analogues **5a,b**.

5b R≖Ac

Results and Discussion

Alkaline epoxidation of 10-oxatricyclodecadienones 2.

The ultimate conversion of the tricyclic enones 2 into the epoxides 4 involves two transformations (Scheme 1). The first one is a regioselective epoxidation of the electron poor double bond between C-4 and C-5 of the substrates 2, to afford the corresponding epoxy ketones 3. This epoxidation was carried out with alkaline

hydrogen peroxide, which is the common reagent for such a nucleophilic epoxidation (Scheme 2). Yields were

generally close to quantitative, see Table 1. Some attention had to be payed to the amount of hydrogen peroxide in the epoxidation of the thioethers 2e and 2f. Too great an excess presumably also brings about some oxidation on sulphur, as is suggested by the lower yields obtained for 3e and 3f.

substr. no.	R ₁	R ₂	product no.	yield [®] [%]
2a	н	Н	3a	94
2b	н	CH ₂ OMe	3b	98
2c	н	CH ₂ OEt	3c	95
2d	н	CH ₂ OiPr	3d	94
2e	н	CH ₂ SPh	3e	60 ^b
2f	н	CH ₂ SBz	3f	77 ^b
2g	Me	н	3g	93
2h	Me	CH ₂ OMe	3h	100

Г	al	ol	e	1

a. Except for 3e and 3f the yields given refer to crude products (purity ca. 95%).

b. Yield after flash chromatography.

The alkaline epoxidation turned out to be a stereospecific process. In all cases only one diastereomer was formed as was indicated by melting points, ¹H-NMR and capillary GC data. In conformity with the stereochemistry postulated^{2,5,17-19} and found^{16,20} for such tricyclic enones, the peroxide anion is expected to enter stereospecifically from the least hindered side of the molecule, *anti* to the oxa-bridge, adding in a conjugate fashion to the enone moiety of 2 (Scheme 2). In the products 3 the epoxide ring will thus be orientated as indicated in Scheme 2. To remove any doubts about this mechanism and about the final structure of the products, epoxide 3b was subjected to an X-Ray analysis. This structure determination indeed confirmed the anticipated *exo*-configuration of the epoxide ring²¹. It is most likely that for the oxatricyclodecadienones 2 the steric bulk and the electronegative nature of the oxa-bridge cooperate in the steric approach control of incoming nucleophiles.

Flash vacuum thermolysis of the 10-oxatricyclodecadienone epoxides 3.

The second step in the route to cyclopentadienone epoxides 4 is a retro Diels-Alder reaction of the furan adducts 3 (Scheme 1). In view of the aromatic nature of furan, moderate cycloreversion temperatures were anticipated. We hoped that at these temperatures the thermally induced rearrangement of the epoxides 4 to the corresponding 2-pyrones 6 would not take place (Scheme 3).

Thermal cycloreversions can be accomplished under various conditions. We chose to employ the FVT technique since in previous work^{12,13,17} excellent results had been obtained for the FVT cycloreversions of the 10-carbon analogues 7. It should be noted however, that other techniques may be applied as well to accomplish

the thermal cycloreversion of the 10-oxatricyclodecadienone epoxides 3. This is demonstrated by Oda et al²² who performed the thermolysis of 3a to afford 4a by sublimation under reduced pressure (300 mm Hg) in a short path distillation apparatus at 120~140°C. In our FVT set-up²³ (quartz pyrolysis tube (16x1.3 cm), P~10⁻² mbar) the thermal conversion of 3a was brought about at 375°C and 0.05 mbar, affording the parent cyclopentadienone epoxide 4a in 90% yield as the sole product (see Table 2, entry 1). Lower temperatures resulted in incomplete or no conversion, while higher temperatures soon led to substantial amounts of pyrone 6a. Already at 425°C a 1:1 mixture of 4a and 6a was obtained in 90% total yield (compare entry 1 and 1^{*}, respectively). The thermolyses of the 4-substituted tricyclodecadienone epoxides 3b-f were carried out using the same equipment. To avoid undesired pyrone formation small adjustments in temperature and pressure had to be made, but, having established those optimum conditions, the epoxides 4b,c,e,f were obtained in virtually quantitative yields (entry 2,3,5,6). For 3d the reaction conditions were not optimized. We expect however, that a thermolysis temperature between 300° and 340°C will give 4d as the only product (compare entries 2,3,5 and 6). With the equipment indicated, the pyrone formation could not be avoided during the syntheses of the 4-substituted epoxides 4g and 4h from 3g and 3h, respectively. To minimize the pyrone production, a longer pyrolysis tube (25x1.3 cm) and oven were chosen, while the vacuum was kept at the same level. The longer contact time resulting therefrom

allowed a lower thermolysis temperature, however, not low enough to avoid the pyrone formation completely. The conditions affording optimum yields for 4g and 4h are included in Table 2, viz. entry 7 and 8, respectively. The high yields obtained in the above thermolyses demonstrate that furan derived adducts, such as 2, are excellent precursors for an FVT mediated synthesis of cyclopentadienone epoxides.

In the thermolysates obtained from 3g, two pyrones, viz. 5-methyl-2-pyrone (6g) and 3-methyl-2-pyrone (6g*), were found instead of the single pyrone observed in the other thermolyses. The formation of all these pyrones 6a-h from the corresponding cyclopentadienone epoxides 4a-h is explained in Scheme 5.

		thermolysis conditions		composition of the pyrolysatc ^b					
	substr.	Р	T_2/T_1^c		products		:	subs	tr.
entry ^a	no.	[mbar]	[°C]	no.	[%]	no.	[%]	no.	[%]
1.	3a	0.05	375/75	4a	90	6a	-	3a	<5
1*.		0.06	425/75		45		45		-
2.	3b	0.06-0.08	360/90	4b	90	6b	<5	3b	<5
3.	3c	0.05	340/90	4c	≥ 9 0	6c	<5	3c	-
3*.		0.06	525/110				84	•	-
4.	3d	0.05-0.06	350/70 ^d	4d	75 ^d	6d	25 ^d	3d	-
5.	3e	0.2	300/135	4e	95	бе	-	3e	-
6.	3f	0.2	300/135	4f	95	6 f	-	3f	-
7.	3g	0.09-0.15	355/65	4g	85	6g/6g*	15	3g	-
8.	3h	0.08-0.09	310/70	4h	84	6h	11	3h	<5

Tab	le	2
-----	----	---

a. The thermolyses 1-6 were carried out in a short oven (16 x 1.3 cm); for the thermolyses 7 and 8 a longer oven (25 x 1.3 cm) was used.

b. The compositions of the pyrolysates were calculated from their ¹H-NMR spectra.

c. T_1 = preheating temp; T_2 = thermolysis temp.

d. Conditions not optimized, see text.

The 10-oxatricyclodecadienone epoxides 3 were found, as expected to undergo the [4+2] cycloreversion at considerably lower temperatures than their carbon analogues 7. Whereas the flash vacuum thermolyses of the former led to complete conversion at temperatures ranging from 300-375°C, the thermolyses of the latter required generally temperatures up to or even higher than 500°C. Only in those cases, in which the resulting cyclopentadienone epoxide possessed a π -substituent at C-3, the temperature needed for the cycloreversion was lower, *viz. ca* 430°C (Scheme 4)^{12,13}. Such a π -substituent enhances the thermodynamic stability of the products 8 by extending the conjugation of the enone moiety and as a result thereof the E_{act} of the cycloreversion is appreciably lowered. The E_{act} of the thermal rearrangement to 2-pyrones, however, is increased by this same stabilisation. This increase is apparently sufficiently large to allow the isolation of the cyclopentadienones 8, even when relatively high thermolysis temperatures are applied. In the absence of such a π -substituent the temperatures of these cycloreversions are too high ($\geq 500^{\circ}$ C) to allow the isolation or even detection of the cyclopentadienone epoxides. Then only 2-pyrones are obtained¹⁷.

An additional and significant factor influencing the temperature of the cycloreversion is the relative steric energy of the polycyclic epoxides 3. The data collected in Table 2 suggest that an increase in size of the substituent at C-4 considerably facilitates the cycloreversion process. This is particularly striking for the thioethers 3e and 3f for which the optimum FVT temperatures are about 50°C lower than for the ethers 3b-d.

Since the C-4 substituent is positioned syn with respect to the 10-oxa-bridge, this observation may be rationalized by assuming a considerable enhancement in the steric energy of 3 as a result of an increased interaction with the 10-oxa-bridge. The fact that this change in steric energy is apparently large enough to facilitate the cycloreversion process is another demonstration of the proximity effect of the 10-oxa-bridge in tricyclic structures such as 2 and 3.

The influence of a substituent at C-5 was not studied in detail. Such a substituent will experience a smaller steric influence from the 10-oxa-bridge than a substituent at C-4 and will therefore presumably hardly reduce the temperature of the cycloreversion.

The epoxides **4a-h** appeared much easier to handle than anticipated from the literature.⁴⁻⁷ They could be stored in the freezer without noticeable deterioration and were not affected during purification using flash chromatography. During their isolation their relatively high volatility had to be taken into account.

Their spectral features are characteristic for their structure. The IR absorption for the carbonyl group appears at 1732 cm⁻¹. In the ¹H-NMR spectra a typical²⁴ set of (double) doublets is found for the olefinic protons, H₃ and H₂, at δ 7.5 ± 0.1 and δ 6.0 ± 0.1 ppm, respectively. The signal for H₄ (m or d) appears at δ 4.0 ± 0.2 ppm and the (double) doublet for H₅ at δ 3.6 ± 0.1 ppm. These ¹H-NMR data are in agreement with the reported⁵ resonances of the parent compound 4a. The relatively low field position of H₄, as compared with H₅, is remarkable. The electron density at C-4 is apparently lower than at C-5. It shows that the electronegative influence of the carbonyl group efficiently is transferred by the C-2, C-3 double bond.

The thermally induced rearrangement of cyclopentadienone epoxides to 2-pyrones has previously been discussed and is suggested to proceed by a sequence of thermal pericyclic reactions, as presented in Scheme 5¹². This mechanism is supported by the observation of Pirkle and Turner²⁵ that ketene aldehydes 10 (R_2 =H) at elevated temperatures reversibly close to 2-pyrones or undergo reversible [1,5] signatropic H-shifts (Scheme 5). The occurrence of such 1,5-shifts explains the concomitant formation of pyron 6g^{*} in the thermal rearrangement of epoxide 4g to pyron 6g. Furthermore, the initial [π 4a + π 2a] cycloreversion reaction to ketene aldehyde 10 is in fact related to the conversion of ketene 11 into the bicyclic compound 12 (Scheme 6), for which transformation a similar [π 4a + π 2a] pericyclic pathway has been posited by Morris and Waring²⁶.

Selective opening of the epoxide ring of 4b. Synthesis of epi-pentenomycin analogues, 5a and 5b.

11

As indicated in the introduction, subtle conditions are probably necessary to achieve a selective reaction with the epoxide function in cyclopentadienone epoxides. Previous work¹³ on **8c** (*vide supra*) had revealed that the epoxide group of this particular substrate is significantly less sensitive to acid hydrolysis than anticipated. Its epoxide ring was not affected by treatment with 0.4 N H₂SO₄ in ether. However, in acetone containing 1% 5N H₂SO₄ a selective opening leading to a trans diol was accomplished. Application of the last mentioned acidic conditions to 4b led to a smooth cleavage of the epoxide ring, affording the methyl protected *epi*-pentenomycin, 5a (Scheme 7)²⁷.Comparison of the ¹H-NMR spectra of the resulting diol 5a and its acylated derivative 5b, with the spectra of their epimers¹⁷, confirmed unambiguously the *trans*-configuration of the diol group. The overall yield of this conversion appeared to vary between 30% and 55%. Presumably, both the high solubility of diol 5a in water and the reactive nature of 4b and 5a disfavour a high and reproducible yield.

12

Scheme 7

Concluding remarks

The results presented in this paper demonstrate that the 10-oxatricyclodecadienones 2 offer a general and stereospecific route to 4- and/or 5-substituted cyclopentadienone epoxides 4. In most cases the competing formation of 2-pyrones can almost completely be suppressed by an appropriate choice of the FVT conditions. The versatility of the cyclopentadienone epoxides 4 for the synthesis of cyclopentenoid natural products is demonstrated by the synthesis of the *epi*-pentenomycin analogues 5a and 5b. Further exploration of the chemistry of cyclopentadienone epoxides will be dealt with in forthcoming papers.

Experimental

<u>General remarks</u>

Melting points were measured with a Reichert Thermopan microscope and are uncorrected. IR spectra were taken on a Perkin Elmer 298 infrared spectrophotometer. ¹H-NMR spectra were recorded on a Varian EM-390 or a Bruker WH-90 spectrometer using TMS as internal standard. For mass spectra a Varian SM-1B or a double focussing VG 7070E mass spectrometer was used. Column chromatography under light pressure ("flash chromatography"²⁸) was carried out at a pressure of *ca* 1.5 bar, a column length of *ca* 15 cm and a column diameter of 1-4 cm, using Merck Kieselgel 60 H or Merck Aluminium Oxid 150 neutral (Typ T).

<u>Oxa-tricyclodecadienone epoxides 3a-h via alkaline epoxidation of oxatricyclodecadienones 2a-h</u>: general procedure²⁹.

To a 0.5-0.1 M solution of $2a \cdot h^{16}$ in a 1:1 mixture of methanol and dichloromethane were successively added, 35% hydrogen peroxide (2-3 eq) and 0.2 N sodium hydroxide (0.04-0.06 eq). The mixture was stirred vigorously for *ca*. 3 hrs and then diluted with dichloromethane and water (CH₂Cl₂:H₂O = 2:1). The aqueous phase was extracted with dichloromethane (3x). The combined organic solutions were washed with water (3x), dried (MgSO₄), filtered and evaporated. The crude epoxides were generally sufficiently pure (¹H-NMR and capillary GC data) for further use. Analytically pure samples were obtained by crystallization or flash chromatography.

Exo-4,5-epoxy-exo-10-oxatricyclo[5.2.1.0^{2,6}] deca-8-en-3-one (3a).

The epoxidation of $2a^{16}$ (1.4 g; 9.1 mmol) was carried out as described in the general procedure, yielding 1.47 g (94%) of 3a. The capillary GC diagram of the crude product showed 3 peaks, belonging to

epoxy-cyclopentenone 4a (6.1%), pyrone 6a (3.3%) and epoxide 3a (90%), respectively. The first two compounds are not impurities, but result from thermolysis of 3a in the injection port of the capillary GC. The ¹H-NMR soectrum confirmed the purity (\geq 95%) of the crude sample. Crystallization from n-hexane afforded analytically pure 3a, <u>mp</u> 87-88°C (white needles). <u>IR</u>(KBr) v(s): 1730(br,C=O), 1372, 1325/1315, 1262, 1219/1210/1202, 1190, 1042, 1020/1012, 950/935/928, 910, 880, 860/850, 832, 810/802, 715/705, 610 cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) & 2.31(1H,dd,J_{6,5}=1.1Hz,J_{6,2}=5.9Hz;H₆), 2.69(1H,d,J_{2,6}=5.9Hz;H₂), 3.58(1H,dd, J_{4,2}=0.8Hz,J_{4,5}=2Hz;H₄), 3.86(1H,m,J_{5,4}=2Hz;H₅), 5.07(2H,s;H₁,H₇), 6.42(1H,dd,J=1.5 resp 6Hz)/6.55(1H,dd, J=1.5 resp 6Hz)(H₈,H₉). The signals for H₂, H₄, H₅ and H₆ were assigned after spin decoupling. <u>MS</u>(CI) m/e(%): 165(24;M+1⁺), 147(9;-H₂O), 137(8;-CO), 125(14), 111(8), 97(49;-furan), 91(16), 81(7),69(60;furan+1⁺), 68(100;furan⁺). (Found: C 65.68, H 5.01. Calc. for C₉H₈O₃: C 65.85, H 4.91%.)

Exo-4,5-epoxy-endo-4-methoxymethyl-exo-10-oxatricyclo[5.2.1.0^{2,6}]deca-8-en-3-one (3b).

The epoxidation of $2b^{16}$ (780 mg; 4.0 mmol) was carried out as described in the general procedure, yielding 813 mg (98%) of 3b. The ¹H-NMR spectrum of the crude product showed no contaminants. Flash chromatography (Al₂O₃/hexane-ethyl acetate (3:1)) afforded analytically pure 3b as a thick white oil, which solidified in the freezer (capillary GC output: 3 peaks, epoxy-cyclopentenone 4b (45%), pyrone 6b (1%) and epoxide 3b (52%), respectively). <u>IR</u>(CCl₄) v(s): 1742(C=O), 1122, 1090(C-O), 1028, 870, 700 cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) & 2.35(1H,br d,J_{6,2}=5.8Hz;H₆), 2.57(1H,d,J_{2,6}=5.8Hz;H₂), 3.34(3H,s;OCH₃), 3.60/3.74/3.83/3.97(2H,AB_q,J_{AB}=12.6Hz;CH₂OMe), 3.92(1H,br s;H₅), 5.05(2H,br s;H₁,H₇), 6.41(dd,J=1.8 and 5.4Hz)/6.54(dd,J=1.8 and 5.4Hz)(2H;H₈,H₉). <u>MS</u>(CI) m/e(%)³⁰: 209(1;M+1⁺), 169(11), <u>141</u>(17;-furan), <u>109</u>(100; -furan,-CH₃OH), <u>95</u>(25;M⁺-furan,-CH₂OCH₃), <u>81</u>(45;-furan,-CH₃OH,-CO), 68(23;furan⁺), 45(19;CH₂OCH₃⁺). <u>HRMS</u>(CI) m/e: 209.0803 (calc. for C₁₁H₁₃O₄(M+1): 209.0814).

Exo-4,5-epoxy-endo-4-ethoxymethyl-exo-10-oxatricyclo/5,2.1.0^{2,6}/deca-8-en-3-one (3c).

The epoxidation of $2c^{16}$ (206 mg; 1.0 mmol) was carried out as described in the general procedure, yielding 210 mg (95%) of 3c. The ¹H-NMR spectrum of the crude product showed no contaminants. Flash chromatography (Al₂O₃/hexane-ethyl acetate(5:1)) afforded analytically pure 3c as a colourless oil (capillary GC output: 2 peaks, epoxy-cyclopentenone 4c (32%) and epoxide 3c (68%)). <u>IR</u>(film) v(s): 1732(C=O), 1115, 1090(C-O), 870, 703, 610 cm⁻¹.¹<u>H-NMR</u>(CDCl₃) &: 1.11(3H,t,J=6.5Hz;OCH₂CH₃), 2.32(1H,dd,J_{6,5}=1.1Hz, J_{6,2}=6Hz;H₆), 2.57(1H,d,J_{2,6}=6Hz;H₂), 3.49(2H,q,J=6.5Hz;OCH₂CH₃), 3.65/3.78/3.83/3.97(2H,AB_q,J_{AB}=13Hz; CH₂OEt), 3.89(1H,d,J_{5,6}=1.1Hz;H₅), 5.00(2H,br s;H₁,H₇), 6.35(1H,dd,J=1.5 and 5.8Hz)/6.48(1H,dd,J=1.5 and 5.8Hz)(H₈,H₉). The assignment of the signals for H₅ and H₆ was confirmed by spin decoupling.

Exo-4,5-epoxy-endo-4-isopropoxymethyl-exo-10-oxatricyclo[5.2.1.0^{2,6}]deca-8-en-3-one (3d).

The epoxidation of $2d^{16}$ (402 mg; 1.8 mmol) was carried out as described in the general procedure, yielding 400 mg (94%) of 3d, as a thick, white oil. The ¹H-NMR spectrum of this product showed no contaminants. Crystallization from n-pentane failed. <u>IR</u>(film) v(s): 2960/2920/2865(sat C-H), 1738(C=O), 1380/1370(i-Pr), 1150, 1125, 1090(C-O), 905, 870, 805, 703, 610 cm⁻¹. ¹H-NMR(CDCl₃) & 1.05(6H,d,J=6Hz; CH(C<u>H₃)₂), 2.33(1H,dd,J_{6,5}=1.3Hz,J_{6,2}=5.8Hz;H₆), 2.54(1H,d,J_{2,6}=5.8Hz;H₂), 3.75(1H,septet,J=6Hz;C<u>H</u>(CH₃)₂), 3.67/3.79/3.82/3.96(2H,AB_q,J_{AB}=12.5Hz;CH₂OiPr), 3.89(1H,d,J_{5,6}=1.3Hz;H₅), 4.74(2H,br s;H₁,H₇), 6.31(1H, dd,J=1.5 and 5.6Hz)/6.44(1H,dd,J=1.5 and 5.6Hz)(H₈,H₉). <u>MS</u>(CI) m/e(%)³⁰: 237(30;M+1⁺), 177(24;-C₃H₇OH), <u>169</u>(100;-furan),</u>

145(38),<u>127(79;</u>-furan,-C₃H₆), 110(22;-furan,-OC₃H₇), <u>109(22;</u>-furan,-C₃H₇OH), <u>95(16;</u>M⁺-furan, -CH₂OiPr), <u>81(</u>20;-furan,-C₃H₇OH,-CO), 68(13;furan⁺). <u>HRMS(CI)</u> m/e: 237.1123 (calc. for $C_{13}H_{17}O_4(M+1)$: 237.1127).

Exo-4,5-epoxy-endo-4-phenylthiomethyl-exo-10-oxatricyclo/5.2.1.0^{2,6}]deca-8-en-3-one (3e).

The epoxidation of $2e^{16}$ (115 mg; 0.43 mmol) was carried out as described in the general procedure, yielding 100 mg (*ca.* 82%) of crude 3e. Purification by flash chromatography (Al₂O₃/hexane-ethyl acetate (5:1)) left 73 mg (60%) of pure product. <u>IR</u>(KBr) v: 1738(s), 1700(m), 1470(m), 1440(m), 1408(m), 1198(m), 1143(m), 1098(m), 1028(m), 1008(m), 920(m), 872(s), 802(m), 755(s), 695(s) cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) & 2.40(1H,dd, J_{6,7}=0.8Hz,J_{6,2}=6.1Hz;H₆), 2.52(1H,d,J_{2,6}=6.1Hz;H₂), 3.13/3.30/3.50/3.67(3H,AB_q+ s,J_{AB}=15.2Hz;CH₂SPh + H₅ (3.67 ppm)), 4.80(1H,d,J_{7,6}=0.8Hz;H₇), 5.10(1H,br s;H₁), 6.38(1H,dd,J=1.4 and 5.6Hz)/6.51(1H,dd,J=1.4 and 5.6Hz)(H₈,H₉), 7.28(5H,m;ArH). <u>MS</u>(EI) m/e(%)³⁰: 286(27;M⁺), <u>218</u>(51;-furan), <u>123</u>(2;CH₂SPh⁺), <u>109</u>(88; -furan,-SPh and/or SPh⁺), <u>95</u>(100;-furan,-CH₂SPh), <u>77</u>(23;C₆H₅⁺), 68 (16;furan⁺). (Found: C 66.80, H 4.87. Calc. for C₁₆H₁₄O₃S: C 67.11, H 4.93%.)

Endo-4-benzylthiomethyl-exo-4,5-epoxy-exo-10-oxatricyclo[5.2.1.0^{2.6}]deca-8-en-3-one (3f).

The epoxidation of $2f^{16}$ (354 mg; 1.3 mmol) was carried out as described in the general procedure, yielding 353 mg (*ca.* 94%) of crude **3f**. Purification by flash chromatography (SiO₂/ethyl acetate), afforded 287 mg (77%) of pure **3f** as a colourless oil. <u>IR</u>(CCl₄) v: 1743(s), 1452(w), 1408(w), 1312(w), 1262(w), 1150(w), 1090(w), 1028(m), 910(m), 870(m), 700(s) cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) & 2.40(1H,dd,J_{6,5}=1.2Hz,J_{6,2}=6.0Hz;H₆), 2.57(1H,d,J_{2,6}=6.0Hz;H₂), 2.64/2.81/2.91/3.09(2H,AB_q,J_{AB}=15.4Hz;CH₂Ph), 3.73(2H,s;CH₂SBz), 3.84(1H,d, J_{5,6}=1.2Hz;H₅), 4.98(1H,d,J=1.4Hz)/5.08(1H,d,J=1.4Hz)(H₁,H₇), 6.40(1H,dd,J=1.4 and 5.6Hz)/ 6.53(1H,dd,J=1.4 and 5.6Hz)(H₈,H₉), 7.27(5H,br s;ArH). <u>MS</u>(CI) m/e(%): 301(6;M+1), 233(24;M+1-furan), 215(10;M+1-furan,-H₂O), 126(28), 110(10;M+1-furan,-SBz), 91(100;Bz⁺), 69(15;(furan+1)⁺). <u>HRMS</u>(CI) m/e: 301.0899 (calc. for C₁₇H₁₇O₃S (M+1): 301.0898).

Exo-4,5-epoxy-endo-5-methyl-exo-10-oxatricyclo[5.2.1.0^{2,6}]deca-8-en-3-one (3g).

The epoxidation of $2g^{16}$ (725 mg; 2.4 mmol) was carried out as described in the general procedure, yielding 734 mg (93%) of 3g, as a white solid. The ¹H-NMR spectrum of the crude product showed no contaminants. Crystallization from hexane-ethyl acetate (4:1) afforded analytically pure 3g, mp 85-87°C. IR(KBr) v(s): 2940, 1750(C=O), 1400, 1255, 1232, 1192, 1110, 1075, 1022, 990, 852, 805, 715, 675, 615 cm⁻¹. ¹H-NMR(CDCl₃/CCl₄) &: 1.63(3H,s;CH₃), 2.27(1H,d,J_{6,2}=6Hz;H₆), 2.46(1H,d,J_{2,6}=6Hz;H₂), 3.30(1H,s;H₄), 4.98(br s)/5.04(br s)(2H;H₁,H₇), 6.44(2H,m;H₈,H₉). <u>MS(EI)</u> m/e(%): 178(0.7;M⁺), 177(1.1;M-1), 149(1.5;M-1, -CO), 110(36;-furan), 82(48;-furan,-CO), 68(100;furan⁺). (Found: C 67.49, H 5.66. Calc. for C₁₀H₁₀O₃: C 67.41, H 5.66%.)

Exo-4,5-epoxy-endo-4-methoxymethyl-endo-5-methyl-exo-10-oxatricyclo[5.2.1.0^{2,6}]deca-8-en-3-one (3h).

The epoxidation of $2h^{16}$ (676 mg; 3.3 mmol) was carried out as described in the general procedure, yielding 740 mg (100%) of 3h, as a white solid. The ¹H-NMR spectrum of the crude product showed no contaminants. Crystallization from hexane-ethyl acetate (3:1) afforded analytically pure 3h, <u>mp</u> 60-63°C. <u>IR</u>(KBr) v(s): 1735(C=O), 1120, 1015, 915, 870,720 cm⁻¹. ¹H-NMR(CDCl₃) δ : 1.71(3H,s;CH₃), 2.38(1H, d,J_{6,2}=6.3Hz;H₆), 2.54(1H,d,J_{2,6}=6.3Hz;H₂), 3.37(3H,s;OCH₃), 3.56/3.69/3.89/4.02(2H,AB_qJ_{AB}=11.7Hz; CH₂OMe), 5.02(1H,br s)/5.10(1H,br s)(H₁,H₇), 6.46(2H,m;H₈,H₉). <u>MS</u>(CI) m/e(%)³⁰: (no M⁺, M+1 or M-1

peak), 205(11;M+1-H₂O), <u>155</u>(33;M+1-furan), <u>123</u>(100;M+1-furan,-CH₃OH), <u>109</u>(17;M⁺-furan,-CH₂OCH₃), <u>95</u>(18; M+1-furan,-CH₂OCH₃,-CH₃), 68(furan⁺). (Found: C 64.70, H 6.39. Calc. for $C_{12}H_{14}O_4$: C 64.85, H 6.35%.)

Flash-vacuum thermolysis of oxatricyclodecadienone epoxides, 3a-h: general remarks.

The polycyclic epoxides 3a-h were distilled or sublimed in vacuo through a hot quartz tube (16 or 25 x 1.3 cm). The pyrolysates were collected immediately after the pyrolysis tube in a cold trap at $-78^{\circ}C^{23}$. By carefully varying the pressure (P), the preheating temperature (T₁) and the oven temperature (T₂) optimum conditions were established for the majority of the reactions. Usually several runs were needed before the best conditions were found. The pyrolysates then often consisted of a mixture of unreacted substrate and products. The composition of these mixtures was at best deduced from ¹H-NMR data, as cap GC data sometimes gave a slightly distorted picture due to cycloreversion and rearrangement reactions taking place in the injection port of the capillary GC. The products could easily be isolated from the pyrolysates by flash chromatography on silicagel using a hexane-ethyl acetate mixture as the eluent. The isolation of the cyclopentadienone epoxides from the eluates required some care as these epoxides are rather volatile. In the experimentals below generally those conditions, that led to optimum yields of epoxides 4a-h are given.

4,5-Epoxy-2-cyclopentenone (4a).

Flash vacuum thermolysis (16 cm tube/ T_1 75°C/ T_2 375°C/P 0.05 mbar/1.5 hr) of 3a (164 mg; 1 mmol) provided 86 mg (*ca.* 90%) of 4a. Only a small trace of 3a ($\leq 5\%$) was detected in the ¹H-NMR spectrum of the pyrolysate. Flash chromatography (SiO₂/hexane-ethyl acetate (3:1)) of crude product mixtures (see: general remarks) afforded pure 4a as a colourless oil. <u>IR</u>(CCl₄)⁵ v: 1735(s;C=O), 1332(m), 1175(w)/1165(w), 1082(w)/1072(w), 993(w),960(w), 938(w), 845(s) cm⁻¹. ¹<u>H-NMR</u>(CDCl₃)⁵ δ : 3.67(dd;H₅), 4.14(m;H₄), 6.02(dd;H₂), 7.63(dd;H₃).

Further eluation afforded successively **3a** and *2H-pyran-2-one* (**6a**) (colourless oil). <u>IR</u>(CCl₄)⁵ v: 1745(s;C=O), 1245(m), 1192(m), 1112(w), 1080(m), 1060(w) cm⁻¹. ¹<u>H-NMR</u>(CCl₄) &: 6.05-6.17(1H,m;H₅), 6.17-6.33(1H,m;H₃), 7.13-7.39(1H,m;H₄), 7.39-7.42(1H,m;H₆).

The thermolysis of 3a (61 mg; 0.4 mmol) at an oven temperature of 425°C (other conditions unchanged) led to a 1:1 mixture of epoxide 4a and pyrone 6a (32 mg; 90% total yield).

4,5-Epoxy-5-methoxymethyl-2-cyclopentenone (4b).

Flash vacuum thermolysis (16 cm tube/ T_1 90°C/ T_2 360°C/P 0.06-0.08 mbar/1.5 hr) of **3b** (99 mg; 0.5 mmol) provided 59 mg (*ca.* 90%) of **4b**. Only small traces ($\leq 5\%$) of **3b** and pyrone **6b** were detected in the ¹H-NMR spectrum of the pyrolysate. Flash chromatography (SiO₂/hexane-ethyl acetate (3:2)) of crude product mixtures (see: *general remarks*) afforded pure **4b** as a colourless oil. <u>IR</u>(CCl₄) v: 1732(s;C=O), 1332(m), 1198(w), 1135(m), 1103(m), 828(m) cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) &: 3.40(3H,s;OCH₃), 3.73/3.87/3.99/4.16(2H,AB_q, J_{AB}=12Hz;CH₂OMe), 4.13(1H,br s;H₄), 6.00(1H,dd,J_{2,4}=2.2Hz,J_{2,3}=6Hz;H₂), 7.60(1H,dd,J_{3,4}=1.5Hz, J_{3,2}=6Hz;H₃). <u>MS</u>(EI) m/e(%): 140(2;M⁺), 125(3;-CH₃), 110(5), 95(100;-CH₂OCH₃), 45(15;CH₂OCH₃⁺). <u>HRMS</u>(EI) m/e: 140.0475 (calc. for C₇H₈O₃(M): 140.0473).

Further eluation afforded successively **3b** and *6-Methoxymethyl-2H-pyran-2-one* (**6b**) (colourless oil). <u>IR</u>(CCl₄) v: 1745(s;C=O), 1640(w), 1560(m), 1200(w), 1125(m), 1090(m) cm⁻¹. ¹<u>H-NMR</u>(CCl₄) δ : 3.40(3H, s;OCH₃), 4.15(2H,s;CH₂OMe), 6.02(1H,d,J_{5,4}=9.6Hz;H₅), 6.13(1H,d(d),J_{3,4}=6.2Hz,(J=1.3Hz);H₃), 7.18(1H,dd, J_{4,3}=6.2Hz,J_{4,5}=9.6Hz;H₄).

4,5-Epoxy-5-ethoxymethyl-2-cyclopentenone (4c).

Flash vacuum thermolysis (16 cm tube/ T_1 90°C/ T_2 340°C/P 0.05 mbar/4 hr) of 3c (141 mg; 0.6 mmol) provided *ca.* 95 mg (≥ 90%) of 4c. Only a small trace of pyrone 6c (≤ 5%) was detected in the ¹H-NMR spectrum of the pyrolysate. Flash chromatography (SiO₂/hexane-ethyl acetate (3:2)) of crude product mixtures (see: *general remarks*) afforded pure 4c as a colourless oil. ¹H-NMR(CDCl₃) δ : 1.20(3H,tr,J=6.6Hz;OCH₂CH₃), 3.54(2H,q,J=6.6Hz;OCH₂CH₃), 3.75/3.89/4.05/4.18(2H,AB_q,J_{AB}=13Hz;CH₂OEt), 4.15(1H,m;H₄), 6.04(1H,dd, J_{2,4}=2.4Hz,J_{2,3}=6Hz;H₂), 7.60(1H,dd,J_{3,4}=1.5Hz,J_{3,2}=6Hz;H₃). <u>MS</u>(70eV) m/e: 154(M⁺), 125(-C₂H₅), 109(-OC₂H₅), 95(-CH₂OEt), 59(CH₂OEt⁺). <u>HRMS</u> m/e: 154.063 (calc. for C₈H₁₀O₃(M): 154.066).

Further eluation afforded successively **3c** and 6-*Ethoxymethyl*-2*H*-*pyran*-2-one (**6c**) (colourless oil). <u>IR</u>(CCl₄) v: 2978(m), 2920(m), 2860(m), 1740(s;C=O), 1640(m), 1560(m), 1315(m), 1195(,m), 1175(m), 1122(s), 1088(s) cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) δ : 1.24(3H,tr,J=7Hz;OCH₂CH₃), 3.58(2H,q,J=7Hz;OCH₂CH₃), 4.23(2H,br s;CH₂OEt), 6.21(1H,d,J_{5,4}=10Hz;H₅), 6.25(1H,d(d),J_{3,4}=6Hz,(J=1.2Hz);H₃), 7.29(1H,dd,J_{4,3}=6Hz, J_{4,5}=10Hz;H₄).

The thermolysis of 3c, preheated at 110°C, at an oven temperature of 525°C and a pressure of 0.06 mbar led to pyrone 6c as the only product in 84% yield.

4,5-Epoxy-5-iso-propoxymethylcyclopentenone (4d).

Flash vacuum thermolysis (16 cm tube/ T_1 70°C/ T_2 350°C/P 0.05-0.06 mbar/3 hr) of **3d** (223 mg; 0.9 mmol) produced a 3:1 mixture of epoxide **4d** and pyrone **6d** (131 mg; 87% total yield). Optimization of thermolysis conditions was not carried out. Flash chromatography (SiO₂/hexane-ethyl acetate (3:1)) of the pyrolysate afforded pure **4d** as a colourless oil (75%). <u>IR</u>(film) v: 3070(w), 2968(s), 2922(m), 2868(m), 1722(s;C=O), 1380(m), 1368(m), 1335(s), 1178(m), 1125(s), 1080(s), 840(s), 825(s) cm⁻¹. ¹<u>H-NMR</u>(CCl₄) δ : 1.14(6H,d,J=6.7Hz;CH(CH₃)₂), 3.57(1H,septet,J=6.7Hz;C<u>H</u>(CH₃)₂), 3.57/3.70/4.00/4.13(2H,AB_qJ_{AB}=11.4Hz; CH₂OiPr), 4.00(1H,br s;H₄), 5.97(1H,dd,J_{2,4}=1.9Hz,J_{2,3}=6Hz;H₂), 7.53(1H,dd,J_{3,4}=1.5Hz,J_{3,2}=6Hz;H₃). <u>MS</u>(CI) m/e(%): 169(59;M+1⁺), 127(100;-C₃H₆), 109(34;-C₃H₇OH), 95(31;M⁺-CH₂OiPr), 81(68;-C₃H₇OH,-CO), 73(5;CH₂OiPr⁺), 43(12;C₃H₆⁺). <u>HRMS</u>(CI) m/e: 169.0873 (calc. for C₉H₁₃O₃(M+1): 169.0865).

Further eluation afforded 6-iso-Propoxymethyl-2H-pyran-2-one (6d) as a pale tinted oil. ¹<u>H-NMR</u>(CCl₄) δ : 1.17(6H,d,J=6.8Hz;CH(C<u>H</u>₃)₂), 3.63(1H,septet,J=6.8Hz;C<u>H</u>(CH₃)₂), 4.17(2H,br s;CH₂OiPr), 6.01(1H,d, J_{5,4}=9.6Hz;H₅), 6.11(1H,d,J_{3,4}=7.1Hz;H₃), 7.17(1H,dd,J_{4,3}=7.1Hz;J_{4,5}=9.6Hz;H₄).

4,5-Epoxy-5-phenylthiomethyl-2-cyclopentenone (4e).

Flash vacuum thermolysis (16 cm tube/ Γ_1 135°C/ Γ_2 300°C/P 0.2 mbar/5 hr) of 3e (95 mg; 0.33 mmol) provided 69 mg (95%) of epoxide 4e as the only product. This epoxide was obtained as an oil. <u>IR</u>(CCl₄) v: 3070/3050(w), 2955(w), 2923(w), 1736(s;C=O), 1480(w), 1438(w), 1332(w), 692(m) cm⁻¹. <u>1H-NMR</u>(CDCl₃) δ : 3.22/3.38/3.61/3.77(2H,AB_q,J_{AB}=14.4Hz;CH₂SPh), 3.83(1H,dd,J_{4,3}=1.6Hz,J_{4,2}=2.0Hz;H₄), 6.07(1H,dd, J_{2,4}=2.0Hz,J_{2,3}=6Hz;H₂), 7.34(5H,m;ArH), 7.45(1H,dd,J_{3,4}=1.6Hz,J_{3,2}=6Hz;H₃). <u>MS</u>(EI) m/e(%): 218(57;M⁺), 123 (16;CH₂SPh⁺), 109(68;-SPh and/or SPh⁺), 95(100;-CH₂SPh), 81(10), 77(10;C₆H₅⁺), 65(15), 45(22), 39(31). <u>HRMS</u>(EI) m/e: 218.0391 (calc. for C₁₂H₁₀O₂S (M): 218.0402).

<u>5-Benzylthiomethyl-4,5-epoxycyclopentenone (4f)</u>.

Flash vacuum thermolysis (16 cm tube/ T_1 135°C/ T_2 300°C/P 0.2 mbar/6.5 hr) of **3f** (102 mg; 0.34 mmol) provided 75 mg (95%) of epoxide **4f** as the only product. This epoxide was obtained as an oil. <u>IR</u>(CCl₄) v: 3060(w), 3025(w), 2918(w), 1734(s;C=O), 1452(m), 1408(m), 1333(m), 1028(m), 910(m), 700(s) cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) δ : 2.74/2.91/3.06/3.22(2H,AB_q,J_{AB}=15Hz;SCH₂Ph), 3.75(2H,br s;CH₂SBz), 3.90(1H,dd, J_{4,3}=1.4Hz, J_{4,2}=2.2Hz;H₄), 5.99(1H,dd, J_{2,4}=2.2Hz,J_{2,3}=6Hz;H₂), 7.26(5H,br s;ArH), 7.47(1H,dd,J_{3,4}=1.4Hz, J_{3,2}=6Hz;H₃). <u>MS</u>(EI) m/e(%): 232(2;M⁺), 141(5;-CH₂C₆H₅), 126(54), 123(21;SCH₂C₆H₅⁺), 122(13), 110(27), 95(27;-CH₂SCH₂C₆H₅), 91(100;CH₂C₆H₅⁺), 82(12), 65(20), 45(17), 39(39). <u>HRMS</u>(EI) m/e: 232.0565 (calc. for C₁₃H₁₂O₂S (M+1): 232.0558).

4,5-Epoxy-4-methyl-2-cyclopentenone (4g).

Flash vacuum thermolysis (25 cm tube/ T_1 65°C/ T_2 355°C/P 0.09-0.15 mbar/2 hr) of **3g** (320 mg; 1.8 mmol) provided 192 mg (97%) of a mixture of epoxide **4g** (85%), and pyrones **6g** and **6g*** (15%; *ca*. 2:3). Flash chromatography (SiO₂/hexane-ethyl acetate (4:1)) of crude product mixtures (see: *general remarks*) afforded pure **4g** as a colourless oil. <u>IR</u>(CCl₄) v: 1745(s)/1722(s)(C=O), 1442(m), 1410(s), 1330(m), 1165(m), 1088(s), 1065(m), 900(s), 868(m), 700(m) cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) & 1.76(3H,s;CH₃), 3.54(1H,d,J_{5,2}=1.8Hz;H₅), 5.91(1H,d,J_{2,5}=1.8Hz,J_{2,3}=6.1Hz;H₂), 7.46(1H,d,J_{3,2}=6.1Hz;H₃). <u>MS</u>(CI) m/e(%): 111(100;M+1⁺), 85(17;-CO), 57(12). <u>HRMS</u>(CI) m/e: 111.0448 (calc. for C₆H₇O₂(M+1): 111.0446).

Further eluation afforded 3-Methyl-2H-pyran-2-one (6g*), $^{1}H-NMR(CCl_{4})^{25}$ & 2.00(3H,s;CH₃), 6.00(1H,tr,J=6Hz;H₅), 6.98(1H,d,J_{4,5}=6Hz;H₄), 7.32(1H,d,J_{6,5}=6Hz;H₆) and 5-Methyl-2H-pyran-2-one (6g). <u>IR(CCl_4)</u> v: 1748(s)/1725(m) (C=O), 1655(w)/1645(w), 1540(w), 1240(w), 1210(w), 1138(w), 1115(w) cm⁻¹. $^{1}H-NMR(CCl_{4})^{25}$ & 1.93(3H,s;CH₃), 6.16(1H,d,J_{3,4}=9.8Hz;H₃), 7.08(1H,dd,J_{4,6}<2Hz,J_{4,3}=9.8Hz;H₄), 7.20(1H,br s;H₆).

4,5-Epoxy-5-methoxymethyl-4-methyl-2-cyclopentenone (4h).

Flash vacuum thermolysis (25 cm tube/ T_1 70°C/ T_2 310°C/P 0.08-0.09 mbar/10 hr) of **3h** (161 mg; 0.72 mmol) provided 105 mg (*ca.* 95%) of a mixture of epoxide **4h** (84%) and pyrone **6h** (11%). Also a small trace (\leq 5%) of **3h** was detected in the ¹H-NMR spectrum of the pyrolysate. Flash chromatography (SiO₂/hexane-ethyl acetate (3:1)) of crude product mixtures (see: *general remarks*) afforded pure **3h** as a colourless oil. <u>IR</u>(CCl₄) v: 2990(w), 2920(m), 2822(w), 1732(s;C=O), 1450(w), 1388(m), 1330(m), 1300(w), 1195/1190(m), 1132(m), 1108(s), 1088(m), 1043(m), 950(w), 902(w) cm⁻¹. ¹H-NMR(CDCl₃) & 1.73(3H,s;CH₃), 3.40(3H,s;OCH₃), 3.61/3.73/4.04/4.18(2H,AB_q,J_{AB}=11Hz;CH₂OMe), 5.96(1H,d,J_{2,3}=6.3Hz;H₂), 7.44(1H,d,J_{3,2}=6.3Hz;H₃). <u>MS</u>(CI) m/e(%): 155(74;M+1⁺), 123(100;-CH₃OH), 109(19;M⁺-CH₂OCH₃), 95(70;-CH₂OCH₃,-CH₃), 45(15;CH₂OCH₃⁺). <u>HRMS</u>(CI) m/e: 155.0710 (calc. for C₈H₁₁O₃(M+1): 155.0708).

Further eluation afforded 6-Methoxymethyl-5-methyl-2H-pyran-2-one (6h). IR(CCl₄) v: 2990(w), 2920(m), 2820(w), 1742(s;C=O), 1645(m), 1550(w), 1450(w), 1387(w), 1367(w), 1305(m), 1205(w), 1192(m), 1128(m), 1088(s), 1005(m), 862(m) cm⁻¹. ¹H-NMR(CCl₄) &: 2.04(3H,s;CH₃), 3.38(3H,s;OCH₃), 4.16(2H,s; CH₂OMe), 6.18(1H,d,J_{3,4}=9Hz;H₃), 7.03(1H,d,J_{4,3}=9Hz;H₄). <u>MS</u>(CI) m/e(%): 155(100;M+1⁺), 123(20;-CH₃OH), 109(4;M⁺-CH₂OCH₃), 57(11), 45(10;CH₂OCH₃⁺). <u>HRMS</u>(CI) m/e: 155.0706 (calc. for C₈H₁₁O₃(M+1): 155.0708).

(4R*,5S*)-4,5-dihydroxy-5-methoxymethyl-2-cyclopentenone (5a).

A solution of 4b (86 mg; 0.6 mmol) in acetone (25 ml, containing 1% 5N H₂SO₄) was stirred for 2 days. Then NaHCO₃ (5 g) and MgSO₄ (5 g) were added and stirring was continued overnight. The solids were filtered off and carefully rinsed with acetone. The combined filtrates were concentrated to give 86 mg of crude 5a, as a pale yellow oil. Purification of this material was not attempted. <u>IR</u>(film) v: 3700-3040 (s;OH), 2980(m), 2920(m), 1710(s;C=O), 1635(s;C=C), 1100(s) cm⁻¹. ¹<u>H-NMR</u>(CD₃OD) &: 3.33(3H,s;CH₂OCH₃), 3.57(2H,s; CH₂OCH₃), 4.73(1H,br s;H₄), 6.27(1H,br d,J_{2,3}=6Hz;H₂), 7.53(1H,dd,J_{3,4}=1.5Hz,J_{3,2}=6Hz;H₃).

Instead of purificaton, the crude diol **5a** was acylated by stirring it for 3 hrs in a solution of dichloromethane (4 ml) with Et₃N (0.3 ml), Ac₂O (0.2 ml) and DMAP (10 mg). After the usual work-up the crude product (151 mg, brown tinted oil) was purified by flash chromatography (SiO₂/ethyl acetate) to afford 78 mg of (<u>4R*,5S*)-4,5-diacetoxy-5-methoxymethyl-2-cyclopentenone</u> (**5b**), as a colourless oil (54% overall yield). IR(CCl₄) v: 1735(broad s;C=O), 1370(m), 1245(s), 1220(s) cm⁻¹. ¹<u>H-NMR</u>(CDCl₃) δ : 2.10(s)/2.13(s) (6H;2xCH₃), 3.33(3H,s;CH₂OC<u>H₃</u>), 3.55(2H,s;CH₂OCH₃), 6.26(1H,t,J_{4,3}=J_{4,2}=2Hz;H₄), 6.47(1H,dd,J_{2,4}=2Hz, J_{2,3}=6Hz;H₂), 7.40(1H,dd,J_{3,4}=2Hz,J_{3,2}=6Hz;H₃). <u>MS</u>(EI) m/e(%): 242 (0.71;M⁺), 158(10;-2xCH₂CO), 140(51; -CH₂CO,-CH₃COOH), 113(19;-2xCH₂CO,-CH₂OMe), 95(63;-CH₂CO,-CH₃COOH,-CH₂OMe), 45(43;CH₂OMe⁺), 43(100;CH₃CO⁺). <u>HRMS</u>(EI) m/e: 242.0787 (calc. for C₁₁H₁₄O₆(M): 242.0790).

References and notes

- 1. Part of this work has already been published in a preliminary communication². This paper provides a detailed and extended account.
- Klunder, A. J. H.; Houwen-Claassen, A. A. M.; Kooy, M. G.; Zwanenburg, B. Tetrahedron Lett. 1987, 28, 1329.
- 3. Ullman, E. F. J. Am. Chem. Soc. 1963, 85, 3529.
- 4. Dunston, J. M.; Yates, P. Tetrahedron Lett. 1964, 5, 505.
- 5. Chapmann, O. L.; Hess, T. C. J. Org. Chem. 1979, 44, 962.
- 6. Baltrop, J. A.; Colin Day, A. C.; Samuel, C. J. J. Chem. Soc., Chem. Comm. 1977, 598 and references cited therein.
- 7. Padwa, A. Tetrahedron Lett. 1964, 5, 813.
- 8. Padwa, A.; Hartman, R. J. Am. Chem. Soc. 1966, 88, 1518.
- 9. Pütter, P.; Dilthey, W. J. Prakt. Chem. 1937, 150, 49.
- Ando, W.; Miyazaki, H.; Ueno, K.; Nakanishi, H.; Sakurai, T.; Kobayashi, K. J. Am. Chem. Soc. 1981, 103, 4949.
- 11. Takata, T.; Tajima, R.; Ando, W. Chem. Lett. 1985, 665.
- 12. Klunder, A. J. H.; Bos, W.; Verlaak J. M. J.; Zwanenburg, B. Tetrahedron Lett. 1981, 22, 4553.
- 13. Klunder, A. J. H.; Bos, W.; Zwanenburg, B. Tetrahedron Lett. 1981, 22, 4557.
- 14. Hua, D. H.; Venkataraman, S.; Chan-Yu-King, R.; Paukstelis, J. V. J. Am. Chem. Soc. 1988, 110, 4741.
- For recent reviews on this technique and its synthetic scope see: (a) Brown, R. F. C. Pyrolytic Methods in Organic Chemistry; Organic Chemistry Monographs, Vol. 41; Academic: New York, 1980; (b) Wiersum, U. E. in Aldrichimica Acta, Vol. 17, No.2, 1984; (c) Lasne, M. C.; Ripoll, J. L. Synthesis, 1985, 121; (d) Ichihara, A. Synthesis, 1987 207.

- Houwen-Claassen, A. A. M.; Klunder, A. J. H.; Kooy, M. G.; Steffann, J.; Zwanenburg, B. Preceding paper.
- 17. Verlaak, J. M. J. Ph.D. Thesis, University of Nijmegen, Febr. 1983; Chpt. 3.5.
- 18. Oda, M.; Kanao, Y.; Kasai, M.; Kitahara, Y. Bull. Chem. Soc. Jpn. 1977, 45, 2497.
- Klunder, A. J. H.; Crul, M. J. F. M.; Houwen-Claassen, A. A. M.; Kooy, M. G.; Zwanenburg, B. Tetrahedron Lett. 1987, 28, 3147.
- (a) Smits, J. M. M.; Beurskens, P. T.; Smits, J. R. M.; Parthasarathi, V.; Houwen-Claassen, A. A. M.; Klunder, A. J. H. J. Cryst. Spectrosc. Res. 1988, 18, 1; (b) Smits, J. M. M.; Beurskens, P. T.; Klunder, A. J. H.; Crul, M. J. F. M. J. Cryst. Spectrosc. Res. 1986, 16, 665; (c) Noordik, J. H.; Luinge, H. J.; Klunder, A. J. H. Cryst. Struct. Commun. 1981, 12, 143.
- 21. Houwen-Claassen A. A. M.; Klunder, A. J. H.; Moers, F. G.; Behm, H.; Beurskens, P.T.; Zwanenburg, B. To be published.
- 22. Oda, M.; Kawanishi, S. Jap. Patent 53-127495, 1978; Chem. Abstr. 90, P137666z.
- 23. A detailed description of the FVT equipment is given in ref. 17, p 154.
- Williams, D. N.; Fleming, I. Spektroskopische Methoden zur Strukturaufklärung; Thieme: Stuttgart, 1975; p 138.
- 25. Pirkle, W. H.; Turner, W. V. J. Org. Chem. 1975, 40, 1617.
- 26. Morris, M. R.; Waring, A. J. J. Chem. Soc., Chem. Commun. 1969, 526.
- See for other approaches to epi-pentenomycins: (a) Shono, T.; Matsumura, Y.; Yamnae, S.; Suzuki, M. Chemistry Letters 1980, 1619; (b) Smith, A. B.; Branca, S. J.; Pilla, N. N.; Guaciaro, M. A. J. Org. Chem. 1982, 47, 1855.
- 28. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- The procedure is based on the alkaline epoxidation of dicyclopentadiene-3-one, reported by Chapman and Hess⁵.
- 30. The underscored signals are also found in the corresponding mass spectrum of the derived cyclopentadienone epoxide.